c# - changing activation function from Sigmoid to Tanh? -


i'm trying change neural net using sigmoid activation hidden , output layer tanh function. i'm confused should change. output calculation neurons or error calculation propagation? output calculation:

public void calcoutput()  {     if (!isbias)      {         float sum = 0;         float bias = 0;         //system.out.println("looking through " + connections.size() + " connections");         (int = 0; < connections.count; i++)          {             connection c = (connection) connections[i];             node = c.getfrom();             node = c.getto();             // connection moving forward             // ignore connections send our output             if (to == this)              {                 // isn't necessary                 // treating bias individually in case need @ point                 if (from.isbias) bias = from.getoutput()*c.getweight();                 else sum += from.getoutput()*c.getweight();             }         }         // output result of sigmoid function         output = tanh(bias+sum);     } } 

it works great how trained before, want want train give 1 or -1 output. when change output = sigmoid(bias+sum); output = tanh(bias+sum); result messed up...

sigmoid:

public static float sigmoid(float x)  {     return 1.0f / (1.0f + (float) mathf.exp(-x)); } 

tanh:

public float tanh(float x) {     //return (float)(mathf.exp(x) - mathf.exp(-x)) / (mathf.exp(x) + mathf.exp(-x));     //return (float)(1.7159f * system.math.tanh(2/3 * x));     return (float)system.math.tanh(x); } 

as can see tried different formula found tanh none outputs make sense, -1 ask 0 or 0.76159 ask 1 or keeps flipping between positive , negative number when asking -1 , other mismatches...

-edit- updated working code (changed above calcouput use now):

public float[] train(float[] inputs, float[] answer)  {     float[] result = feedforward(inputs);     deltaoutput = new float[result.length];      for(int ii=0; ii<result.length; ii++)     {         deltaoutput[ii] = 0.66666667f * (1.7159f - (result[ii]*result[ii]))  * (answer[ii]-result[ii]);     }      // backpropogation      for(int ii=0; ii<output.length; ii++)     {         arraylist connections = output[ii].getconnections();         (int = 0; < connections.count; i++)          {             connection c = (connection) connections[i];             node node = c.getfrom();             float o = node.getoutput();             float deltaweight = o*deltaoutput[ii];             c.adjustweight(learning_constant*deltaweight);         }     }      // adjust hidden weights     (int = 0; < hidden.length; i++)      {         arraylist connections = hidden[i].getconnections();         //debug.log(connections.count);         float sum  = 0;         // sum output delta * hidden layer connections (just 1 output)         (int j = 0; j < connections.count; j++)          {             connection c = (connection) connections[j];             // connection hidden layer next layer (output)?             if (c.getfrom() == hidden[i])              {                 for(int k=0; k<deltaoutput.length; k++)                     sum += c.getweight()*deltaoutput[k];             }         }             // adjust weights coming in based:         // above sum * derivative of sigmoid output function hidden neurons         (int j = 0; j < connections.count; j++)          {             connection c = (connection) connections[j];             // connection previous layer (input) hidden layer?             if (c.getto() == hidden[i])              {                 float o = hidden[i].getoutput();                 float deltahidden = o * (1 - o);  // derivative of sigmoid(x)                 deltahidden *= sum;                    node node = c.getfrom();                 float deltaweight = node.getoutput()*deltahidden;                 c.adjustweight(learning_constant*deltaweight);             }         }      }     return  result; } 

i'm confused should change. output calculation neurons or error calculation propagation? output calculation:

you should using derivative of sigmoid function somewhere in backpropagation code. need replace derivative of tanh function, 1 - (tanh(x))^2.

your code looks c#. this:

console.writeline(math.tanh(0));     // prints 0 console.writeline(math.tanh(-1));    // prints -0.761594155955765 console.writeline(math.tanh(1));     // prints 0.761594155955765 console.writeline(math.tanh(0.234)); // prints 0.229820548214317 console.writeline(math.tanh(-4));    // prints -0.999329299739067 

which in line tanh plot:

plot of tanh function

i think you're reading results wrong: correct answer 1. sure -1 tanh(0)?

if you're sure there's problem, please post more code.


Comments

Popular posts from this blog

php - Admin SDK -- get information about the group -

dns - How To Use Custom Nameserver On Free Cloudflare? -

Python Error - TypeError: input expected at most 1 arguments, got 3 -